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ABSTRACT. Two methods of calculating two-layer
flow are described. The first is a generalization of
the numerical method of determining the inverse problem
[1] to the case of two-layer flows without taking mixing
into consideration. The second is a method of character-
istics for calculating two-layer flows in supersonic
nozzles. Here, the usual method of characteristics is
modified to calculate a point on the line separating layers
having different adiabatic exponents, different total
pressures and temperatures. This paper also presents the
results of calculating a two-layer flow in nozzles with
different adiabatic exponent and gas flowrate ratios in
the layers.

1. TIn [1] calculations of super and subsonic irrotational isentropic
flow for an ideal gas utilized a system of gas dynamic equations written with
the variables ¥ (current function) and x (Cartesian coordinates in the meri-
dian plane). The flow field was defined as the result of numerical solution
of an inverse problem in nozzle theory. With coordinates ¥, x it is conven-—
ient to carry out calculations of multilayer flows with distinct physical pro-
perties. Such calculations can be made in the framework of an ideal liquid
without taking layer mixing into account. The total temperature, total pres-
sure and adiabatic exponent may then be different in the layers. We shall

designate the flow core parameters with subscript 1 and the parameters of .
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the boundary layer with subscript 2
(Figure 1). If we set Y=VY» up to a
certain current line, the gas will
have tﬁg adiabatic exponent A=k and
a total pressure of Pyi- Beginning at
this current line, it will have the
adiabatic ‘exponent k=k, and a total

pressure p, . On the current line

Y=1,, both flows should have identi-

cal velocity angles of inclination and

identical static pressure values.

Figure 1.

In this connection, at the current
line Y ==1, the following relation—
ships should be satisfied.
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Here u and v are projections of the velocity vector w on the x and y axes
of a Cartesian system of coordinates with respect to a — the critical speed
of sound; 7, ¢ are the pressure and density in relation to the pressure and
density for W =ax; Py is the total pressure. After calculating the flow field
by the difference Formulas (1.2)-(1.5) of [1] up to the current line withy =1, -
on this line Formulas (1.1)~(1.3) of this reference are used to determine the

parameters with subscript 2 based on the known parameters with subscript 1.

The calculation is continued using Formulas (1.2)-(1.5) of [1].

The results of calculating a two-layer flow with a velocity distribution

on the axis (3.2) of [1] for Wa=04, Be=1.9, 1/0=235 and k=114
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k,=14 06=1 and ,==0.04 are given in Figure 2, where we have shown the
current line for the calculated flow ({=const) , the line w = const, and
the line 6=0 (light dots). According to Figure 2, in the second layer the
sonic line w = 1 (dark dots) is locatéd fé.rther below the flow than in the
first layer. From this figure, it also follows that the value of w on both
sides of the separation boundary are quite close to each other in the subsonic_

region, but they become markedly different from the transsonic region on.

2. Let us consider supersonic two-layer flow in a nozzle with an angu-
lar point and a given profile. On the initial characteristic ABC, the flow
parameters (Figure 1) are known. The calculations given below were made on
the condition tbét the velocity vector on initial characteristic ABC was para-
llel to the x-axis, and the value P was assigned on characteristic AB.
Moreover, it was assumed that B==JM*— 1 on characteristic AB was constant
(M = 1.01) and equal to the value B2 on the line- of sebaration in region 2.
On characteristic BC, the quantity B was also assumed to be constant and equal
to a value of Bas on the line of separation in region 1. Thus, a value of
was found from the condition that the gas static pressures were equal on the

line of separation, from which it follows that:
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Since the values of f:x and quat point B are different, while the
angles of inclination of velocity 0 and 0w coincide, the angle of inclina-

tion of characteristic AC at point B undergoes a break.

We may write the formulas for calculations by the method of characteristics
of the point on the line of separation between the two layers. The computa-
tional formulas for points ;n the angular point field, points on the axis of
symmetry and on the p;ofile'in eagh léyer are considered in greater detail in
[2]. Point 3, situated on the liﬁe of separation, is characterized by the
parameters x,y;B“,B“,§==LgO, whiéh need to be defined. To determine. them,
we use the known points 0, 2, 4, 5 and the auxiliary point 1, located on the
characteristic of the second family, whose location is not defined. To find
the parameters at point 3, we use the>foliowing conditions: (1) point 3 lies
at the intersection of the first family characteristics, passing through
points 1 and 3, and the second family characteristics passing through points
2 and 3; (2) point 3 lies on the current line of the line of separation b3;
(3) the static pressures at point 3 on both sides of the line of separation
are.equal; (4) point 1 lies on the second fémily characteristics in region 1.
If the x coordinate for this point is known, the remaining parameters at the
point are determined by quadratic interpolation. from the known points 0, 4

and 5.

These conditions enable us to obtain six equations for the six unknown
functions, some of which are found as a result by réplécing the differential
equations for direction and consistency along the first and second family
characteristics by finite difference relationships [2]. Depending on the
inclination of the characteristics of the first and second families in a cal-
culation of a point on the separation line, as well as in the case of one-
layer flow [2], we have four variants of formulas for computing the unknown

quantities at a point on the line of separation. For the case when the
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inclinations of the first and second family characteristics are close to Yux,

the formulas have the form
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The (2.2)-(2.7) system is solved by the method of successive approxima-
tions. 'In the first approximation, if we assume that in the coefficient n°

the second term equals the first, from (2.2)—(2.3) we can find x. and Y3
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Moreover, from (2.4) we can find x. assuming that in coefficients m and n

1
the second term equals the first, and parameters with a lower index of 1
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equal parameters with a lower index of 0. Using the value of x,, by means of

>
quadratic interpolation we can find Yqi» Bl and ;l. Parameters En and P are
found from Relationships (2.5) and (2.6) which are reduced to a single trans-
cendental equation with a single unknown .Bu. In the first approximation, the
second terms in coefficients K, J, L, N° are assumed to equal the first.
Solving the transcendental equation by Newton's method, we find Ps« and then
Bsz and Cq> from Relationships (2.6) and (2.7). 1In the following iteratioms,
0’ K, L, J and N,

we use the values of B, Baz Ly ¥y Ui Cl and Bl obtained in the preceding ap-

proximation. In an analogous fashion, the corresponding formulas can be found

in computing .the second terms in the coefficients m, n°, n

for the remaining three variants.

3. Using the method of characteristics described above, calculations
were made of two-layer flow in a nozzle with an angular point. We first con~
sidered fan of expansion waves arising through flow around the angular point
and then the flow on a given contour. In all of the variants consdiered, :
it was assumed that %, =114 and k.=1.4 and the ratio between the flow rates
in the layers was varied by chapging the value of y, (Figure 1). 1In all
variants the total temperature and total pressure in the two layers were

considered equal.

It should be noted that the ratio between the total temperatures does
not enter into Relationships (2.2)-(2.7) and in this connection the results
obtained may be also used for different total temperature ratios. Thus, the

only change is the flow rate ratio between the two layers.

Two-phase axisymmetric supersonic flow was studied in a nozzle with an
angular point, designed for uniform, parallel one-layer flow with an output
Mach number of MO = 4.6 and k = 1.14. We shall first discuss the results of
calculating the parameters in a fan of expansion waves. As a result of the
calculations, it was shown that the distribution of M numbers on the nozzle
axis for two-layer flows with kl = 1.14 and kz'f 1.4 differs only slightly
from the M number distribution over the axis in one-layer flow with k = 1.14

even with flow rates as large as 50% in the boundary layer. As a result of
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these calculations, it follows that a change of angle 6 on the second family
characteristics is nonmonotonic and the maximum of angle 6 is in the wicinity
of the first reflected frém the axis of the characteristic CD. It should be
noted that similar results were also obtained in calculations of the charac-
teristics of a fan of expansion waves in a‘one—layer flow, beginning as a
uniform flow [3]. The results show that in a fan.of expansion waves, at first
the M number change along the characteristics of the second family from the
line of separation to the axis of symmetry occurs monotonically. However,
from the angular point to the line of separation the M number changes nonmono-
tonically, and a maximum of M in the neighborhood of the characteristic BN is
reflected from the line of separation. However, in subsequent characteristics
of a fan of expansion waves, the nonmonotonic character of M variation from
the angular point to the line of separation occﬁrs only for small gas flow /80
rates through the boundary layer (less than 10%). At large flow rates, M
varies monotonically. Naturally, the M number experiences a discontinuity at

the line of separation.

Let us consider the variation of the flow parameters along the line of
separation and compare them with the contour parameters. Figures 3 and 4 show
the dependence of the quantities §==£ée and j3==75ft:7f on the length on
the line of separation and the contour for y, = 0.8, kl =1.14, k2 = 1.4.

From Figures 3 and. 4 and the results, it follows that the values of g and B

on the line of separation (light dots) and on the contour (dark dots) differ
only slightly for x> 1.5 even for large flow rates through the boundary layer
up to 50%. However, the values of Ps: and B« on the line of separation .
differ rather significantly. In Figure 3-6 the radius of the minimum section

is taken as the unit of length.

Let us now consider the variation of parameters on the contour for large
flow rates in the boundary layer. TFigure 5 shows the dependence of the Mach
number for one-layer flows (lower curve k = 1.14) and two-layer with A= 1.14, .
ky=14; y«=0.7 (upper curve), and with kx==144,k2=5@4,y*==031(middle curve),;f "
from which we can see that the M number for a two-layer flow is greater than

the M number for a one-layer flow. Thus, the M number is somewhat larger for
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t a thicker boundary layer. The second family chéracteristics AB (Figure 1)
curves away from the line of separation and approaches point N. For boundary
layer flow rates greater than 107, the Mach numberfin the vicinity of point N
varies monotonically. However, at point 2' on the contour there is a discon-
tinuity of the derivétive, and — as the flow rate increases through the boun-
dary layer — this point is shifted below the flow. Point 2' on the contour,
at which the derivative dM/dx undergoes a discontinuity, is located in the
vicinity of the first family of characteristics, curving away from the line of
separation and leaving the point of intersection of the line of separation and

the last characteristic of the second family.

Figure 6 shows the distribution of pressure along the contour of a
1 1.14 and kz = 1.4

with different values of y, (i.e. different boundary layer flow rates), as well

nozzle with an angular point for a two-layer flow with k

as the pressure distributions on the same contour in a one-layer flow with -

k = 1.14. In the figure, curve 1 corresponds to omne-layer flow, and the re~
maining curves — to a two-layer flow, where curves 2, 3, 4, 5, 6 correspond
to values yx=0.99, 0.95, 0.9, 0.8, 0.7, From the figure, it follows that for
boundary layer flow rates greater than 107, the pressure along the nozzle
decreases. For flow rates less than 107 in the vicinity of the angular point,
there is a positive pressure gradient which arises in the viciﬁity of point N
(Figure 1). From point N the flow in the boundary layer begins to be affected
by the internal layer. The occurrence of a positive pressure gradient is
connected with the fact that, for one and the same angle of rotation of the
flow in Prandtl-Meyer flow, pressure in the flow with a large k decreases more
strongly than in a flow with a small k. For relatively large boundary layer
thicknesses, the effect of the internal layer begins to appear basically after
point 2', so that from point 2' the pressuré derivative undergoes a discontin=-
uity and begins to decrease more sharply, while the pressure approaches the
pressure of a one-layer flow. After this point, the flow in the boundary
laygr is basically determined by the internal layer (Figure 6). Up to point 2',
turbulence brought about by the internal layer is weakened by the fan of
expansion waves. However,.at small boundary layer thicknesses, the effect of

the internal layer is apparent in the immediate neighborhood of the angular




point, and the pressure in the boundary layer strives to equal the pressure in
the internal layer. Since the latter is larger with rotation by one and ﬁhe
same anglé, a positive pressure gradient arises. The positive pressure gra-
dient increases as the thickness of the boundary layer decreases. Naturally,
as the thickness of the layer decreases, the difference between the static
pressures in one-layer and two-layer flows at the wall of the nozzle décreases.
However, the Mach numbers in such flows then differ considerably. Let us note
that the positive pressure gradient in flow around the angular point occurs
onlthhén the adiabatic exponent in‘the boundary layer is greater than the
adiabatic exponent in the center of the flow. We should recall that in the
work in question, all calculations were made for ¢ = 1. For o # 1, special

study is needed on the effects of two-layers on flow around the angular point.

In addition to the calculations for two-layer flows in a nozzle with no
angular point using the grid method given in Section 1, special calculations
in a nozzle with angular point curvature are also presented. As a result of
these calculations, it was shown thdt with angular point curvature — even
with relatively small radii of curvature comprising 0.3-0.5 the radius of the
critical section — a positive pressure gradient on the contour of the nozzle

does not occur.
Preparation of the project and the performance of the calculations were

accomplished by G. D. Viadimirov and M. F. Tamarovskiy, to whom the author is

grateful.
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